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Abstract: 
 
Many current Human Reliability Analysis (HRA) methods calculate human error probability (HEP) 
based on the state of various PSFs. There is no standard set of PSFs used in HRA, rather each method 
uses a unique set of PSFs, with varying degrees of interdependency among the PSFs. In calculating 
HEPs, interdependency is generally ignored or addressed through varying parameters in linear or log-
linear formulas. These dependencies could be more accurately represented by a causal model of PSF 
relationships. 
 
This paper introduces a methodology to develop a data-informed Bayesian Belief Network (BBN) that 
can be used to refine HEP prediction by reducing overlap among PSFs. The BBN framework was 
selected because it has the ability to incorporate available data and supplement it with expert 
judgment. The methodology allows the initial models to be updated as additional data becomes 
available. This paper presents a draft model based on currently available data from human error events 
in nuclear power plants. The resulting network model of interdependent PSFs is intended to replace 
linear calculations for HEPs. 
 
Keywords:  Human Reliability Analysis, human error, Performance Shaping Factors, Bayesian Belief 
Network, 
  
1.  INTRODUCTION 
 
In many Human Reliability Analysis (HRA) models, the human error probability (HEP) is estimated 
based on a set of Performance Shaping Factors (PSFs). The term PSF encompasses the various factors 
that affect human performance and can change the likelihood of a human error. There are more than a 
dozen HRA methods that use PSFs, but there is not a standard set of PSFs used in the methods.  
Current HRA methods rely on sets of PSFs that range from a few to over 50 PSFs, with varying 
degrees of overlap (non-orthogonality) between the PSFs. This non-orthogonality is observed in 
almost every set of PSFs, yet current HRA methods do not offer a causal model of the PSFs. Instead, 
the methods that do address interdependencies generally do so by varying different multipliers in 
linear or log-linear formulas. These dependencies could be more accurately represented by a causal 
model that includes relationships among the PSFs. 
 
This paper introduces a methodology to develop a data-informed Bayesian Belief Network (BBN) that 
can incorporate several types of available data and supplement the data with expert judgment. Many 
HRA methods cannot be easily validated because historically there has been limited, indirect data on 
human actions. HRA is also plagued by the subjectivity of some PSFs and the “invisible” nature of 
human cognition. The use of a Bayesian framework allows us to combine the available data with 
expert information to create a more robust form of HRA. 
 
The proposed model development methodology uses correlation analysis and factor analysis to explore 
patterns of variance and suggests Bayesian techniques to link these patterns to human error. The result 
is a systematic way to evaluate PSFs and to define their interrelationships with respect to human 
performance in multiple aspects of human-machine interaction. 
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This paper introduces a causal model created using a combination of expert opinion and currently 
available data from human error events in nuclear power plants. The data were taken from two 
sources: the US Nuclear Regulatory Commission’s Human Events Repository Analysis (HERA) 
database [1] and a collection of information gathered by the University of Maryland using the 
Information-Decision-Action (IDA) model [2]. 
 
The model uses a PSF hierarchy developed specifically for use in causal models. This taxonomy 
contains a set of orthogonally defined PSFs suitable for both qualitative and quantitative analysis. The 
taxonomy contains PSFs aggregated from current HRA methods organized into six categories 
representing the major aspects of the socio-technical system. The PSF hierarchy, developed in tandem 
with the methodology, can be found in [3]. As additional data become available, the methodology can 
be used to update the model and include more detailed levels of the PSF hierarchy.   
 
2. DATA SOURCES 
 
There were two sources of data used in this research: the Human Events Repository Analysis (HERA) 
database [1] and worksheets from an application of the Information-Decision-Action (IDA) model [2]. 
These data sources were selected because they contained detailed information about the factors that 
influenced single human errors in a risk significant incident at a nuclear power plant (NPP). The 
selected data sources both provided detailed analyses of single human failure events; the analyses 
included an assessment of the state of relevant PSFs and detailed comments that provided additional 
information about the events. Together the two data sources provided detailed data for 158 human 
error events. 
 
2.1 Human Events Repository Analysis (HERA) database 
 
The Human Events Repository Analysis (HERA) database was developed by the United States 
Nuclear Regulatory Commission (NRC) and the Idaho National Laboratory (INL). It is the first 
database designed to collect detailed information about the factors that affect human performance in 
commercial NPPs. The database contains retrospective analyses of risk significant NPP operating 
events that contain at least one human error. The information is gathered from Licensee Event Reports 
(LERs), Inspection Reports (IRs) and Augmented Inspection Team reports (AITs). 
 
There are 11 PSFs used in the HERA database; the PSFs were modeled after the PSFs suggested in the 
NRC's Good Practices for HRA [4]. The HERA database expands upon these PSFs by including 
specific PSF details, which provide additional information about the state of each PSF. There are over 
250 PSF details that correspond to positive or negative influences on the human. During HERA 
coding, the analyst reviews the list of PSF details and selects the details that are relevant to the human 
error event. The analyst uses the PSF details to provide additional information about the state of the 
PSF. The state of the PSF generally corresponds to the state of the PSF details: if mostly positive PSF 
details are checked, the PSF state is “adequate”; if mostly negative PSF details are checked, the PSF 
state is “less than adequate” (LTA). If no PSF details are checked for a PSF, the state of the PSF is 
“nominal” or “indeterminate.” 
 
2.2 Information-Decision-Action Model 
 
The Information-Decision-Action cognitive model is used to analyze the behavior of NPP operators 
during abnormal operating conditions. The IDA model separates PSFs into internal and external PSFs. 
However, the focus of the IDA model is on human cognition, so the external PSF list is not as 
comprehensive as the internal PSF list. An updated version of the IDA model, IDAC (Information, 
Decision, and Action in Crew Context, [5]), expands the IDA PSFs to include a more comprehensive 
set of external factors and an expanded map of information flow.  
 
Four events were analyzed in depth in [2] using the Information-Decision-Action model. Each IDA 
analysis contains several data sheets that provide classification information and root cause event 



analysis that includes cognitive factors. The data sheets include information gathered from site visits 
and operator interviews. Contextual information and additional comments provided in the analysis 
documentation were used to assign values to external PSFs that were not included in the original IDA 
model. 
 
3. PERFORMANCE SHAPING FACTOR HIERARCHY 
 
None of the PSF sets used by current HRA methods was suitable for use in a causal model because 
current PSF sets were designed to be assessed by experts, not to be quantified in a model. One of the 
major issues with many sets was overlap among PSFs. When an expert is assessing the PSFs, the 
expert can mentally adjust for overlapping definitions. However, in a model it is necessary to either 
capture this mental adjustment explicitly or to remove the overlap. There were also additional 
problems with the available PSF sets. Some sets were not comprehensive, i.e., they did not include 
some important PSFs identified in other methods. Other sets included too many factors that could not 
be measured; many sets lacked any metrics that should be used to measure the PSFs, and some 
mislabeled specific behaviors as PSFs (e.g., Work Conduct).  
 
We approached the mapping with the intention of dividing the final PSF set in a way that linked each 
PSF with a single aspect of the socio-technical system, similarly to how they are grouped in THERP 
[6]. The top level of the hierarchy contains five categories: machine-based, person-based, team-based, 
organization-based, and situation-based. This division ensures that each PSF is defined with respect to 
a specific aspect of the socio-technical system, which can help identify the root causes of a human 
error and supports definitional orthogonality. The addition of a hierarchical structure allows us to 
maximize the use of the data by propagating data through the model. 
 
The final PSF set for use in causal modeling is presented in Table 1. The set was developed by 
aggregating information from multiple PSF sets and then refining them into a single set that is 
comprehensive, orthogonal, and measurable. The aggregated PSF information was merged with the 
expansive list of HERA PSF details and then reorganized into a structured PSF hierarchy based on the 
IDAC model. In the IDAC model the PSFs are defined orthogonally, but they are not necessarily 

Table 1: Proposed tiered classification of PSFs for use in HRA causal models. When fully expanded, the set of 
PSFs is suitable for qualitative analysis, and the structure can be collapsed for quantitative analysis. The 
structure also provides a common based framework that can be expanded to deeper levels in the future. 
Italicized elements are behaviors / metrics associated with the parent PSF. 



independent. The IDAC model offers qualitative links between PSFs that can be seen as the beginning 
of a directed model. Further details about the development of the PSF set are provided in [3]. 
 
4. MODEL DEVELOPMENT 
 
This section summarizes the procedure for creating a quantified causal model of relationships among 
PSFs. A full description of the methodology can be found in [3]. The methodology can be applied in 
its entirety to create a data-driven model linked to human error events. The procedure can also be 
modified to create a mixed expert/data model by applying step 1 to identify which variables can be 
included quantitatively and then using expert information to augment the model. 
 
The current methodology assumes that PSFs have two states (Adequate and Less Than Adequate 
(LTA)) because this is the form of current data. Given additional levels of discretization, the 
methodology will start by identifying and merging similar PSF states (e.g. totally inadequate, partially 
inadequate) for each PSF and then proceed to identifying and merging similar PSFs. Suggested 
threshold values are based on the currently available data and may be adjusted as additional data 
becomes available. 
 
4.1 Model Development Tools 
 
4.1.1 Bayesian Belief Network 
 
The basic form of the causal model is a Bayesian Belief Network (BBN) directed acyclic graph. In a 
BBN, each variable is represented as a single node. Relationships between nodes are indicated with 
directed arcs. Once all arcs are drawn, each node is assigned a marginal or conditional probability 
table. These probability tables contain all known information concerning the state of the system based 
on both expert opinion and available data. In a BBN, each node is assigned a probability distribution 
based on the possible states of its parent nodes. Each node in a discrete BBN has a finite number of 
possible states. Many BBNs use binary nodes, where 0 and 1 represent the positive and negative states 
of the node. The sum of the marginal probabilities of all states within the same node must equal 1.0. 
Each possible state of a root node is quantified with the marginal probabilities of the states. Once each 
probability distribution is set, the initial model is complete. As new information becomes available 
(e.g., evidence about the state of one node), the probabilities of all nodes in the model can be 
automatically updated based on the evidence. 
 
The fully quantified BBN represents the prior knowledge for an analyst. To use the model, the analyst 
will make observations (set evidence) about certain nodes and examine the impact on specific nodes of 
interest. By setting evidence, an analyst is proving new information to inform the model. This 
produces updated probabilities for all nodes in the model. Analyst evidence is often the observation of 
a particular state of a node. The analyst sets the evidence in the BBN and the network updates 
probability of each node based on both prior observations and new evidence. For nodes where there is 
no evidence, the network relies on the prior probability. Once the BBN is complete, it can be 
incorporated into a PRA by linking BBN nodes to other risk models [7]. 
 
4.1.2 Polychoric correlation analysis 
 
To create the base structure of a model it is necessary to determine how the nodes of the model relate 
to each other. The relationships between the nodes in the model are determined based on the 
correlation of the PSFs. Correlation gives a quantitative measure of similarity between two variables – 
the amount of variance from the common area between them – thus garnering an initial understanding 
of the variable relationships. The correlation is indicated by a number between -1 and 1. A correlation 
of 0 indicates complete independence between the variables, and a correlation of 1 indicates a perfect 
increasing linear relationship. 
 



Several different correlation techniques can be used to develop a pair-wise correlation matrix. For 
normally distributed data, Pearson product moment correlations can be obtained using most 
commercial software packages. If data is not normally distributed, product-moment correlation values 
are not valid. Discrete data is not normally distributed, but the underlying process creating the data 
may be. For discrete data representing a latent continuous variable, polychoric correlation should be 
used [8]. The fundamental assumption underlying polychoric correlation is that discrete data is 
representative of an underlying normally distributed model and that somewhere in the model there are 
thresholds where the variable changes states. 
 
When using binary data such as the data from IDA and the HERA database, tetrachoric correlation, a 
specific case of polychoric correlation, should be used. Determining tetrachoric correlation is a 
computationally intensive task. Polychoric and tetrachoric correlations can be calculated in SAS by 
using the %POLYCHOR macro [9].  
 
4.1.3 Factor analysis  
 
Factor Analysis is a family of multivariate techniques used to identify relationships among the 
variables and to identify underlying or latent influences. This is accomplished through evaluation of 
patterns of variance in the data. Variance is effectively a measure of deviation (variation) or spread of 
the data. In terms of human action, variance is the difference between observed behavior and expected 
or average behavior. 
 
Factor analysis can be used to discover relationships among multiple PSFs and between PSFs and 
error. The basic assumption of FA is that there are underlying influences in the data, and that these 
underlying influences manifest in patterns of variance that move together. For discrete data, such as 
that in the HERA database, the Minres (MINimum RESiduals) FA technique is appropriate [10]. The 
Minres technique is an unweighted least squares method that seeks to minimize the sums of squares of 
the residual matrix, so the suggested factors explain the maximum amount of variance in the 
correlation matrix. This is an iterative process wherein factors are estimated based on the initial 
communalities and the communalities are then updated based on the results and the process repeats. 
 
Interpretation is the most critical step in any FA. An analyst must give meaning to the factors to 
transform them from abstract numerical concepts to meaningful constructs. Analysts should explore 
several different factor models to determine which factors best fit their application. Without 
interpretation, the factors are simply patterns in data. In a data set there can be several explanations for 
observed patterns of variance. Assuming that there is no overlap between any of the PSFs that would 
affect the variance, all observed variance must be due to some kind of relationship between the PSFs. 
Figure 1 contains graphical representations of three potential causal relationships between PSF A, PSF 
B, and outcome X (i.e., error). In Figure 1a, PSFs A and B are independent of each other, but they 
both directly influence the outcome; they have a common child node. In Figure 1b, PSF B directly 
influences the outcome, and PSF A indirectly influences the outcome through PSF B. In this 
relationship we expect to see the variance move together because A causes (or is a condition for) B. In 
Figure 1c, A and B may or may not influence the same child node, but they still vary together because 

Figure 1: Possible causal relationships between two PSFs (A and B) and an outcome (X). 

(a) (b) (c) 



they share a parent node. 
 
Interpretation of factor results provides preliminary groups of Error Contexts for specific work tasks. 
All sub-events used in this analysis are XHE events, i.e., known failures. We are adapting FA to 
interpret these underlying influences as visible manifestations of failure rather than invisible human 
performance. 
 
4.2 Error Contexts  
 
High correlations suggest only that two specific PSF groups have been observed together in the human 
error events analyzed, but these correlations do not offer insight into why relationships exist among 
PSF groups. High correlation may indicate that the nodes are not orthogonally defined, that two nodes 
have a causal relationship, or that the nodes have a common parent or child node. High correlation 
may also indicate that the PSFs have a synergistic effect on error; we call this synergistic effect an 
Error Context. 
 
Error Contexts (ECs) are patterns of variance identified by factor analysis; each factor (eigenvector) 
retained from factor analysis forms one EC. Patterns of variance identified through FA are 
traditionally labeled “latent variables.”  Since we are analyzing only human failure events (XHEs) 
from HERA and IDA, the observed patterns can be viewed as visible manifestations of the context 
underlying the error. This interpretation is justified for factors with eigenvalues greater than 1.0. An 
eigenvalue greater than 1.0 indicates that its eigenvector accounts for more than its proportional share 
of variance. Each factor is a group of PSFs that contributes more to human performance errors than 
would each PSF if acting alone; the whole (factor) is greater than the sum of its parts (PSFs). 
 
4.3 Model Development Procedure 
 
The model development methodology suggested is based on discrete data similar to the data available 
in the HERA and IDA events. Suggested cut-off values should be adjusted for different data sets after 
considering the amount of data and statistical significance of results. For a more detailed version of the 
full methodology, see [3]. 
 
1) Determine which PSFs will be included in quantitative analysis. 

a) Start with the expanded PSF hierarchy (Table 1) and collapse the PSFs:  
i) Identify PSFs that are LTA in fewer than 10% of the sub-events. Merge these PSFs with 

one or more PSFs at the same level of the hierarchy, or collapse the category.  
ii) Identify PSFs that are LTA in greater than 90% of the sub-events. Expand these PSFs into 

one or more sub-levels. 
iii) Run correlation analysis on PSF set. Identify outliers (PSFs producing several correlations 

> |0.95|). Merge with one or more PSFs. 
iv) Run factor analysis on PSF set. Identify PSF producing the largest Heywood case and 

merge with one or more PSFs. Repeat this step until all Heywood cases are eliminated. 
2) Draw directed arcs between PSFs with correlations > |0.3|. 

a) Direction of the arc is based on expert information about the direction of causality. 
b) Arcs may be omitted between the PSFs if the correlation is judged to be the result of parent, 

child, or EC relationships in the model. 
3) Identify ECs and draw arcs between PSFs and ECs 

a) Run several FA models on PSF set. 
b) Apply FA stopping criteria to determine appropriate number of factors.  
c) Include each factor as an EC in the final model. Draw arcs from each PSF included in the 

factor to the EC node. 
4) Populate marginal and conditional probability tables.  
 



5. CAUSAL MODEL OF HUMAN ERRORS IN NUCLEAR POWER PLANTS 
 
The ultimate goal of model development is to develop a large model containing all of the PSFs in the 
second and third levels of the hierarchy. However, with the amount of data currently available we 
cannot produce valid, convergent factor analysis results on the entire PSF set. To determine the set of 
PSFs used in the final model, the PSF hierarchy was collapsed as indicated in the methodology. In 
order to retain information from the data, PSFs were merged together instead of completely eliminated 
whenever possible.  
 
The final PSF set contains the 9 elements that had sufficient data to be included in the model and that 
provided convergent factor groupings with correlations below |1.0|. The correlations among these 9 
PSFs are suitable to quantify a causal model, and the factors output by FA are also suitable to be 
included in the model. The PSF set is presented in Table 2. 
 

Table 2: The 9 PSFs used in the final causal model 
Model Node Included PSFs 
Training Training 
Org. Culture Safety Culture, Management Activities, Corrective Action Program 
Resources Procedures, Tools, Necessary Information 
Team Communication, Team Coordination, Team Cohesion, Direct Supervision, 

Role Awareness 
Attitude Morale/Motivation/Attitude, Bias, Attention 
Knowledge Skills, Knowledge and Experience, Familiarity with Situation, Physical & 

Psychological Abilities 
Machine Human-System Interface, System Responses 
Loads/Perceptions Task Load, Time Load, Other Loads, Perceived Situation Severity, Perceived 

Situation Urgency, Perceived Decision Responsibility 
Complexity Task Complexity, Hardware & Software Conditions 
 
 
5.1 Model Structure 
 
Each of the 9 PSFs became a single node in the final model. After collapsing the PSF hierarchy down 
based on available data, we ran tetrachoric correlation analysis. The correlation table is presented in 
Table 3. We used a value of |0.3| as the cut-off correlation for a relevant relationship between PSFs; 
arrows were drawn between pairs of PSFs where a causal relationship exists.  
 
There are some correlations that could not be explained by a causal relationship between the PSFs. For 
example, Complexity shows high correlation with Team. To explore these relationships, we ran several 
exploratory factor analyses on the 9 PSFs and compared the results. We ran Principal Factor Analysis 
and Minres factor models for between 1 and 5 factors. We selected the 4-factor model based on the 
eigenvalues of the resulting factors and the shape of the scree plot. The screen plot showed 
discontinuity after the fourth factor. For the PFA, the first four factors had eigenvalues greater than 
1.0. The fourth factor in the Minres results has an eigenvalue of 0.98, but we elected to retain this 
factor based on the scree plot and the PFA eigenvalues. In both PFA and Minres FA, the four-factor 
model had a highest p value of the five models tested. Table 4 contains the Minres FA results for the 9 
PSFs.  
 
The model contains a node for each PSF and each EC. Arcs were drawn between PSFs with 
correlations above |0.3| with a causal relationship supported by expert information. Relationships that 
can be explained causally are explained in this section. Relationships that do not have an obvious 
causal link are explained in Section 5.2. The causal model is presented as Figure 2. 



Table 3: Tetrachoric correlation values used to develop the structure of the 9-Bubble Model 
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Training 1         
Org. Culture 0.151 1        
Resources 0.274 0.029 1       
Team 0.373 -0.025 0.094 1      
Attitude 0.036 0.152 0.006 0.094 1     
Knowledge 0.042 -0.116 -0.086 -0.073 -0.434 1    
Machine 0.089 -0.384 -0.029 0.179 0.004 0.072 1   
Loads/Perceptions 0.514 -0.254 0.170 0.449 0.305 0.076 0.319 1  
Complexity 0.331 -0.319 0.343 0.354 0.082 0.100 0.205 0.463 1 
 

Table 4: Minres factor analysis results for the 9 PSF groups. 
 EC1 EC2 EC3 EC4 
Training 0.67    
Org. Culture  0.75 −0.65  
Resources    0.98 
Team 0.54    
Attitude  0.74 0.64  
Knowledge  −0.37   
Machine     
Loads/Perceptions 0.72  0.45  
Complexity 0.41  0.35 0.34 
Eigenvalues 2.58 1.63 1.27 0.98 

 
There are numerous causal arcs into Loads/Perceptions. There are high correlations between 
Loads/Perceptions and Training, Team, Machine, Complexity, and Attitude. Each of these correlations 
has been interpreted as a causal contributor to Loads/Perceptions because they all directly affect the 
way personnel perceive the situation. This is because perceptions and loads are the worker’s personal 
assessment of the scenario, including the machine, the team, and the situation. Intrinsic worker attitude 
also causally contributes to the individual’s loads and perceptions because the characteristics that 
manifest as attitude also affect individual perception. 
 
The causal arrow from Knowledge to Attitude represents a negative correlation. The arrow implies that 
adequate knowledge contributes to less than adequate personal attitudes, or that LTA knowledge 
contributes to adequate attitudes among personnel. This can be seen in situations where experienced 
personnel use work-arounds (non-compliant attitude) to deal with a situation. Less experienced 
personnel may not know as much about the system and therefore may not be able to develop work-
arounds for the system. They must rely on available resources and tend to approach a situation more 
cautiously to compensate for their reduced knowledge. This effect is observed in HERA event  [11] an 
experienced worker violated emergency operating procedures that require reporting system state to the 
US NRC: “The shift supervisor relied on his memory of determination/notification requirements rather 
than check any procedure (XHE8).” A less experienced worker may have avoided making this error, 
because LTA knowledge about the situation would force the worker to consult the procedure. 
 
The causal arcs from Organizational Culture to Machine and from Organizational Culture to 
Complexity represent a negative correlation. The negative correlation here could be partially due to the 
effect of safety culture on the HERA data; organizations with good organizational culture tend to be 
more willing to report problems with the machine or may more accurately report the complexity of a 
situation. So the causal arrow in the model does not necessarily imply that adequate Organizational 



Culture causes inadequate machinery or complexity, rather that adequate Organizational Culture 
causes increased reporting of inadequate machinery and complex situations. Additionally, 
organizations with inadequate machinery must be more attentive to the machinery and thus benefit 
from a positive organizational culture. As additional data becomes available, further analysis should 
be done to determine the nature of the relationships indicated by these links, or if this link is the result 
of underrepresentation of machine factors in the data. 
 
The causal arrow from Resources to Complexity is logical, because lack of resources results in 
additional complexity. This can be seen in situations where there are inadequate procedures. 
Inadequate procedures may contribute to complexity in several ways. When there are no procedures 
for a situation, the required actions are knowledge based. Knowledge- based actions are more complex 
than rule-based actions. Extremely complex situations are also more likely than routine situations to be 
outside the scope of procedures. However, we cannot draw a causal arrow from resources to 
complexity based on this logic, because the complexity of the situation doesn’t necessarily cause the 
lack of procedure. 
 
5.2 Discussion of Error Contexts 
 
The first error context is the set of Training, Team, Loads/Perceptions, and Complexity. The PSFs 
contributing to this EC have the most significant impact on error because this is the most significant. 
The first factor’s eigenvalue is much larger than the eigenvalues of the other factors; it accounts for 
the greatest amount of variance in the sample. The relationships among these PSFs suggest several 
things about how errors occur in NPPs. The inclusion of Hardware & Software Conditions (merged 
into the Complexity node) as one of the contributors is significant since humans typically do not have 
the opportunity to commit an error if they are not interacting with the plant. During normal operating 
conditions the plant operates with minimal human intervention. Operators monitor plant conditions 
until an abnormal occurrence, i.e., a conditioning event, which requires the operating crew or 
maintenance personnel to interact with the plant. 
 
The relationship between Hardware & Software Conditions and Complexity is a causal relationship – a 
degraded machine state typically causes the situation to become more complex. One example of a 
conditioning event increasing situation complexity can be seen in [12], where an EDG trip occurred 

Figure 2: Causal model of PSFs linked to human error events in nuclear power plants 



during a LOOP event. Other influences that affect Complexity include Teamwork and Training. A 
well-functioning team can reduce the perceived loads and the situation complexity by efficiently 
organizing and dividing tasks. Training can contribute to the proper functioning of the team and also 
contributes to personnel knowledge, which affects how a person perceives the load and the complexity 
of the situation. 
 
The second error context is Organizational Culture, Attitude, and Knowledge. The LTA states of 
Organizational Culture and Attitude are positively correlated with the EC, and LTA Knowledge is 
negatively correlated with it. This suggests that LTA Knowledge is not a contributor to this “type” of 
error. Rather there is not inadequate knowledge; we can’t say that the people are particularly 
knowledgeable, but they do not lack necessary knowledge. The combination of adequate Knowledge 
with LTA Attitude suggests that the attitude of the worker plays a major role in errors committed by 
experienced personnel. The data support the theory that workers with less knowledge or experience 
tend to compensate for their inexperience by working more carefully. Experienced personnel are prone 
to making mistakes due to carelessness or poor work practices, including compliance and prioritization 
behaviors. Poor work practices are rarely limited to one member of an organization; rather, LTA 
Organizational Culture creates an environment that allows worker attitudes to decline. 
 
The third error context is Organizational Culture, Attitude, Loads/Perceptions, and Complexity. The 
fact that both Loads and Complexity load on this factor is logical – a more complex situation will 
increase perceived loads. Likewise, the number of simultaneous tasks (actual loads) can also increase 
complexity. Attitude plays a role in how situations, especially complex situations, are translated into 
perceived loads. Organizational Culture has a negative correlation with this PSF, which suggests that 
this factor is linked to adequate organizational culture. This is likely because the second error context 
(which has a higher eigenvalue and thus explains more of the variance) absorbs most of the situations 
where Organizational Culture is LTA. 
 
The fourth error context is Resources and Complexity. This is the least important factor, which 
suggests that inadequate resources are not seen alone in many errors. Again this EC is linked to 
Complexity, which is logical because complex situations may be unfamiliar to personnel and thus 
personnel rely on the resources, especially procedures, more heavily. 
 
Machine does not loan on any of the factors and therefore does not appear in an error context. This is 
logical because of the generally unchanging nature of HSI; workers accept the system as it is designed. 
Operators tend to compensate for system shortcomings, e.g., they develop workarounds to deal with 
bad display. Maintenance workers also develop workarounds, e.g., a worker who must enter a narrow 
space between display panels might turn sideways to avoid bumping into a panel. 
 
The quantitative analyses support many relationships already theorized to exist. It is interesting to note 
that Complexity loads on the first, third, and fourth factors, which suggests that complexity is an 
important contributor to human error. Complex situations may include failures of multiple system 
components, failure masking (e.g., failed sensors that obscure hardware failures), and unanticipated 
plant conditions. These complex situations may be outside the scope of worker training and available 
procedures, so worker behavior shifts from rule-based to knowledge-based, which increases the 
likelihood of error. 
 
5.3 Model Quantification 
 
This section contains the conditional probability tables for the 9 PSFs in the model. All of the 
probabilities are conditional on the error and a risk significant scenario (RSS), 
 

€ 

P(PSFs | (Error∩ RSS))  
 

 The marginal probability of each state (k) of PSF i was assessed using the relative frequency 
of the state, for n sub-events: 

(1) 

(2) 



€ 

P(PSFi = k) =
nk
n

 

 
For root nodes, the marginal probabilities fully specify the conditional probability table. For nodes 
with one, two, or three parents, the conditional probabilities are assessed using marginal probability of 
the child and each parent, the correlation between the nodes, and a set of linear equations provided in 
[3]. 
 

Training LTA 0.37 
Adequate 0.63  

Knowledge LTA 0.53 
Adequate 0.47  

Org. 
Culture 

LTA 0.48 
Adequate 0.52  

Team LTA 0.46 
Adequate 0.54  

Resources LTA 0.40 
Adequate 0.60  

Loads/ 
Perceptions1 

LTA 0.41 
Adequate 0.59  

 
Machine 

 Org. Culture 
 LTA Adequate 
LTA 0.36 0.62 
Adequate 0.64 0.38  

 
Attitude 

 Knowledge 
 LTA Adequate 
LTA 0.47 0.87 
Adequate 0.53 0.13  

 
 

Complexity 

 
Org. Culture LTA Adeq. 
Resources LTA Adeq. LTA Adeq. 
LTA 0.62 0.50 0.57 0.52 
Adequate 0.38 0.50 0.43 0.48  

 
Conditional probability tables for the Error Context nodes will have to be assessed using expert 
judgment until there is more data about the PSFs affecting human success events. The HERA database 
has the framework to collect this data, but the current success data is not suitable for analysis because 
the retrospective information sources provide very few details about non-error events. Quantification 
of the EC nodes is discussed further in [3]. 
 
6. CONCLUSION 
This paper introduces a methodology to create a causal model of relationships among PSFs. There are 
several possible applications for causal models of relationships among PSFs that are linked to human 
error: 

• The model could be integrated into HEP calculations to provide more informed HEP estimates 
by considering interdependencies among PSFs instead of treating them as independent 
entities. The quantitative aspects of integration are discussed in [3]. 

• The model can be used to assess the benefits of different risk reduction efforts before they are 
implemented.  

• The model can be used for informed error management, e.g., to understand and compensate 
for known weaknesses in the system while long-term actions are planned.  

• The model can be used to identify potential variables to manipulate in simulator training or 
data collection experiments. 

 
Since HRA is a discipline that involves understanding human performance it is difficult to create and 
validate a model. Models are largely based on expert opinion and there are no HRA benchmarks that 

                                                
1 The Loads/Perceptions PSF has five parent nodes and thus has a large number of linear equations 
that must be solved to completely specify the conditional probability table. We have elected to give 
Loads/Perceptions a uniform distribution equal to its marginal probability distribution until more data 
becomes available. 



can be used to validate these models. We have created a modeling approach that uses available data to 
provide a level of validation to the model. Using both expert opinion and available data in the same 
model provides a level of validity greater than any current HRA model. 
 
The BBN provides a natural framework to assess the benefit of alternative risk reduction strategies or 
to provide more informed error management. Analysts can use the BBN to record the known state of a 
PSF and then update the probabilities of the other nodes in the model. Similarly, the analyst can 
compare different risk mitigation efforts by making observations in the model and seeing how they 
affect the likelihood of human error. In both situations the analyst can then see which PSFs have the 
most significant change in probability. Analysts can model different combinations of PSF states to see 
which system elements have the greatest impact on overall system risk and then identify risk-
significant system weaknesses before they result in errors. By evaluating which model nodes have the 
most significant probability changes, the analyst can better direct their resources at system elements 
that have the greatest risk impact. 
 
Acknowledgements 
The authors would like to thank Dr. Erasmia Lois and Dr. Y. James Chang for support throughout this 
project. This work was supported through a Collaborative Research Agreement between the US 
Nuclear Regulatory Commission and the University of Maryland Center for Risk and Reliability. The 
opinions provided in this paper do not represent the views or positions of the U.S. Nuclear Regulatory 
Commission or the U.S. Government.  
 
References 
 
[1] Hallbert, B., R. Boring, D. Gertman, D. Dudenhoeffer, A. Whaley, J. Marble, J. Joe, and E. 
Lois. Human events repository analysis (HERA) system overview. Technical Report NUREG/CR-
6903, US Nuclear Regulatory Commission, 2006, Washington DC. 
[2] Mosleh, A., Smidts, C., and Shen, S.H. Application of a cognitive model to the analysis of 
reactor operating events involving operator interaction (detailed analysis). Technical Report UMNE-
94-004, University of Maryland, 1994, College Park, MD. 
[3] Groth, K. A data-informed model of Performance Shaping Factors for use in Human Reliability 
Analysis. Doctoral Dissertation. University of Maryland, 2009 College Park, MD. 
[4] Kolaczkowski, A., Forester, J., Lois, E., and Cooper, S. Good practices for implementing 
Human Reliability Analysis (HRA). Technical Report NUREG-1792, US Nuclear Regulatory 
Commission, 2005, Washington DC. 
[5] Chang, Y.H.J. and Mosleh, A. Cognitive modeling and dynamic probabilistic simulation of 
operating crew response to complex system accidents: Part 1 - Overview of the IDAC model. 
Reliability Engineering and System Safety, 92(8), pp. 997–1013, (2007). 
[6] Swain, A. and Guttmann, H. A handbook of human reliability analysis with emphasis on nu- 
clear power plant applications. Technical Report NUREG/CR-1278, US Nuclear Regulatory 
Commission, 1983, Washington DC. 
[7] Wang, C. Hybrid Causal Logic Methodology for Risk Assessment. Doctoral Dissertation. 
University of Maryland, 2007 College Park, MD. 
[8] Drasgow, F. Polychoric and polyserial correlations. Encyclopedia of statistical sciences, 
Volume 7. John Wiley and Sons, 1988, New York. 
[9] Samples and SAS notes: Create a polychoric correlation or distance matrix, August 2007. 
http://support.sas.com/kb/25/010.html, Accessed July 2008. 
[10] Harman, H.H. and Jones, W.H. Factor analysis by minimizing residuals (Minres). 
Psychometrika, 31(3), pp. 351–368, (1966). 
[11] Whaley, A. and Miller, E. Crystal River – Reduction in reactor coolant system (RCS) pressure 
due to failure of pressurizer spray valve and failure of its position indication. HERA Event EGG-
HFRU-10085, Idaho National Laboratory, 2006, Idaho Falls, ID. 
[12] Whaley, A. and Miller, E. Peach Bottom 2 – Grid disturbance results in Unit 2 and Unit 3 trips, 
followed by EDG and other equipment failures and procedure problems. HERA Event 277-2003-004-
R00, Idaho National Laboratory, 2006, Idaho Falls, ID. 


